85 research outputs found

    Implementing State Health Reform: Lessons for Policymakers

    Get PDF
    Drawing on five states' experiences, discusses questions and considerations, including the need to coordinate state agencies' work and share data, simplify eligibility and enrollment procedures, and involve community groups and businesses in outreach

    Global and Episodic Bundling: An Overview and Considerations for Medicaid

    Get PDF
    Examines implementation issues for two payment strategies under which a group of providers receives a single payment per patient for a predefined time period for a predefined set of services and which involve risk adjustment and quality measurement

    OSSOS VI. Striking Biases in the detection of large semimajor axis Trans-Neptunian Objects

    Get PDF
    The accumulating, but small, set of large semi-major axis trans-Neptunian objects (TNOs) shows an apparent clustering in the orientations of their orbits. This clustering must either be representative of the intrinsic distribution of these TNOs, or else arise as a result of observation biases and/or statistically expected variations for such a small set of detected objects. The clustered TNOs were detected across different and independent surveys, which has led to claims that the detections are therefore free of observational bias. This apparent clustering has led to the so-called "Planet 9" hypothesis that a super-Earth currently resides in the distant solar system and causes this clustering. The Outer Solar System Origins Survey (OSSOS) is a large program that ran on the Canada-France-Hawaii Telescope from 2013--2017, discovering more than 800 new TNOs. One of the primary design goals of OSSOS was the careful determination of observational biases that would manifest within the detected sample. We demonstrate the striking and non-intuitive biases that exist for the detection of TNOs with large semi-major axes. The eight large semi-major axis OSSOS detections are an independent dataset, of comparable size to the conglomerate samples used in previous studies. We conclude that the orbital distribution of the OSSOS sample is consistent with being detected from a uniform underlying angular distribution.Comment: Accepted for publicatio

    OSSOS III - Resonant Trans-Neptunian Populations: Constraints from the first quarter of the Outer Solar System Origins Survey

    Get PDF
    The first two observational sky "blocks" of the Outer Solar System Origins Survey (OSSOS) have significantly increased the number of well-characterized observed trans-Neptunian objects (TNOs) in Neptune's mean motion resonances. We describe the 31 securely resonant TNOs detected by OSSOS so far, and we use them to independently verify the resonant population models from the Canada-France Ecliptic Plane Survey (CFEPS; Gladman et al. 2012), with which we find broad agreement. We confirm that the 5:2 resonance is more populated than models of the outer Solar System's dynamical history predict; our minimum population estimate shows that the high eccentricity (e>0.35) portion of the resonance is at least as populous as the 2:1 and possibly as populated as the 3:2 resonance. One OSSOS block was well-suited to detecting objects trapped at low libration amplitudes in Neptune's 3:2 resonance, a population of interest in testing the origins of resonant TNOs. We detected three 3:2 objects with libration amplitudes below the cutoff modeled by CFEPS; OSSOS thus offers new constraints on this distribution. The OSSOS detections confirm that the 2:1 resonance has a dynamically colder inclination distribution than either the 3:2 or 5:2 resonances. Using the combined OSSOS and CFEPS 2:1 detections, we constrain the fraction of 2:1 objects in the symmetric mode of libration to be 0.2-0.85; we also constrain the fraction of leading vs. trailing asymmetric librators, which has been theoretically predicted to vary depending on Neptune's migration history, to be 0.05-0.8. Future OSSOS blocks will improve these constraints.Comment: Accepted for publication in A

    Col-OSSOS: The Colours of the Outer Solar System Origins Survey

    Get PDF
    The Colours of the Outer Solar System Origins Survey (Col-OSSOS) is acquiring near-simultaneous gg, rr, and JJ photometry of unprecedented precision with the Gemini North Telescope, targeting nearly a hundred trans-Neptunian objects (TNOs) brighter than mr=23.6m_r=23.6 mag discovered in the Outer Solar System Origins Survey. Combining the optical and near-infrared photometry with the well-characterized detection efficiency of the Col-OSSOS target sample will provide the first flux-limited compositional dynamical map of the outer Solar System. In this paper, we describe our observing strategy and detail the data reduction processes we employ, including techniques to mitigate the impact of rotational variability. We present optical and near-infrared colors for 35 TNOs. We find two taxonomic groups for the dynamically excited TNOs, the neutral and red classes, which divide at gr0.75g-r \simeq 0.75. Based on simple albedo and orbital distribution assumptions, we find that the neutral class outnumbers the red class, with a ratio of 4:1 and potentially as high as 11:1. Including in our analysis constraints from the cold classical objects, which are known to exhibit unique albedos and rzr-z colors, we find that within our measurement uncertainty, our observations are consistent with the primordial Solar System protoplanetesimal disk being neutral-class-dominated, with two major compositional divisions in grJgrJ color space.Comment: Accepted to ApJS; on-line supplemental files will be available with the AJS published version of the pape

    OSSOS: XIII. Fossilized Resonant Dropouts Tentatively Confirm Neptune's Migration was Grainy and Slow

    Full text link
    The migration of Neptune's resonances through the proto-Kuiper belt has been imprinted in the distribution of small bodies in the outer Solar System. Here we analyze five published Neptune migration models in detail, focusing on the high pericenter distance (high-q) trans-Neptunian Objects (TNOs) near Neptune's 5:2 and 3:1 mean-motion resonances, because they have large resonant populations, are outside the main classical belt, and are relatively isolated from other strong resonances. We compare the observationally biased output from these dynamical models with the detected TNOs from the Outer Solar System Origins Survey, via its Survey Simulator. All of the four new OSSOS detections of high-q non-resonant TNOs are on the Sunward side of the 5:2 and 3:1 resonances. We show that even after accounting for observation biases, this asymmetric distribution cannot be drawn from a uniform distribution of TNOs at 2sigma confidence. As shown by previous work, our analysis here tentatively confirms that the dynamical model that uses grainy slow Neptune migration provides the best match to the real high-q TNO orbital data. However, due to extreme observational biases, we have very few high-q TNO discoveries with which to statistically constrain the models. Thus, this analysis provides a framework for future comparison between the output from detailed, dynamically classified Neptune migration simulations and the TNO discoveries from future well-characterized surveys. We show that a deeper survey (to a limiting r-magnitude of 26.0) with a similar survey area to OSSOS could statistically distinguish between these five Neptune migration models.Comment: Accepted for publication in the Astronomical Journa

    OSSOS XXV: Large Populations and Scattering-Sticking in the Distant Transneptunian Resonances

    Full text link
    There have been 77 TNOs discovered to be librating in the distant transneptunian resonances (beyond the 2:1 resonance, at semimajor axes greater than 47.7~AU) in four well-characterized surveys: the Outer Solar System Origins Survey (OSSOS) and three similar prior surveys. Here we use the OSSOS Survey Simulator to measure their intrinsic orbital distributions using an empirical parameterized model. Because many of the resonances had only one or very few detections, jj:kk resonant objects were grouped by kk in order to have a better basis for comparison between models and reality. We also use the Survey Simulator to constrain their absolute populations, finding that they are much larger than predicted by any published Neptune migration model to date; we also find population ratios that are inconsistent with published models, presenting a challenge for future Kuiper Belt emplacement models. The estimated population ratios between these resonances are largely consistent with scattering-sticking predictions, though further discoveries of resonant TNOs with high-precision orbits will be needed to determine whether scattering-sticking can explain the entire distant resonant population or not.Comment: Accepted for publication in Planetary Sciences Journal (PSJ

    A dearth of small members in the Haumea family revealed by OSSOS

    Get PDF
    An extensive survey to search for members of the only known Kuiper belt family, named after the parent body Haumea, found no family members fainter than absolute magnitude H-r = 7.9, significantly brighter than the detection limit (H-r = 9.5). This lack of small members is inconsistent with a catastrophic disruption as the origin of the Haumea family. While collisional families are common in the asteroid belt, only one is known in the Kuiper belt, linked to the dwarf planet Haumea. The characterization of Haumea's family helps to constrain its origin and, more generally, the collisional history of the Kuiper belt. However, the size distribution of the Haumea family is difficult to constrain from the known sample, which is affected by discovery biases. Here, we use the Outer Solar System Origins Survey (OSSOS) Ensemble to look for Haumea family members. In this OSSOS XVI study we report the detection of three candidates with small ejection velocities relative to the family formation centre. The largest discovery, 2013 UQ(15), is conclusively a Haumea family member, with a low ejection velocity and neutral surface colours. Although the OSSOS Ensemble is sensitive to Haumea family members to a limiting absolute magnitude (H-r) of 9.5 (inferred diameter of ~90 km), the smallest candidate is significantly larger, H-r = 7.9. The Haumea family members larger than similar or equal to 20 km in diameter must be characterized by a shallow H-distribution slope in order to produce only these three large detections. This shallow size distribution suggests that the family formed in a graze-and-merge scenario, not a catastrophic collision.6 month embargo; published online: 26 August 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    OSSOS. V. Diffusion in the Orbit of a High-perihelion Distant Solar System Object

    Get PDF
    We report the discovery of the minor planet 2013 SY99_{99}, on an exceptionally distant, highly eccentric orbit. With a perihelion of 50.0 au, 2013 SY99_{99}'s orbit has a semi-major axis of 730±40730 \pm 40 au, the largest known for a high-perihelion trans-Neptunian object (TNO), well beyond those of (90377) Sedna and 2012 VP113_{113}. Yet, with an aphelion of 1420±901420 \pm 90 au, 2013 SY99_{99}'s orbit is interior to the region influenced by Galactic tides. Such TNOs are not thought to be produced in the current known planetary architecture of the Solar System, and they have informed the recent debate on the existence of a distant giant planet. Photometry from the Canada-France-Hawaii Telescope, Gemini North and Subaru indicate 2013 SY99_{99} is 250\sim 250 km in diameter and moderately red in colour, similar to other dynamically excited TNOs. Our dynamical simulations show that Neptune's weak influence during 2013 SY99_{99}'s perihelia encounters drives diffusion in its semi-major axis of hundreds of astronomical units over 4 Gyr. The overall symmetry of random walks in semi-major axis allow diffusion to populate 2013 SY99_{99}'s orbital parameter space from the 1000-2000 au inner fringe of the Oort cloud. Diffusion affects other known TNOs on orbits with perihelia of 45 to 49 au and semi-major axes beyond 250 au, providing a formation mechanism that implies an extended population, gently cycling into and returning from the inner fringe of the Oort cloud.Comment: First reviewer report comments incorporated. Comments welcom

    OSSOS. IX. Two Objects in Neptune's 9: 1 Resonance - Implications for Resonance Sticking in the Scattering Population

    Get PDF
    We discuss the detection in the Outer Solar System Origins Survey (OSSOS) of two objects in Neptune's distant 9:1 mean motion resonance at semimajor axis a 130a\approx~130~au. Both objects are securely resonant on 10~Myr timescales, with one securely in the 9:1 resonance's leading asymmetric libration island and the other in either the symmetric or trailing asymmetric island. These objects are the largest semimajor axis objects with secure resonant classifications, and their detection in a carefully characterized survey allows for the first robust resonance population estimate beyond 100~au. The detection of these objects implies a 9:1 resonance population of 1.1×1041.1\times10^4 objects with Hr<8.66H_r<8.66 (D  100D~\gtrsim~100~km) on similar orbits (95\% confidence range of 0.43×104\sim0.4-3\times10^4). Integrations over 4~Gyr of an ensemble of clones spanning these objects' orbit fit uncertainties reveal that they both have median resonance occupation timescales of 1\sim1~Gyr. These timescales are consistent with the hypothesis that these objects originate in the scattering population but became transiently stuck to Neptune's 9:1 resonance within the last 1\sim1~Gyr of solar system evolution. Based on simulations of a model of the current scattering population, we estimate the expected resonance sticking population in the 9:1 resonance to be 1000-4500 objects with Hr<8.66H_r<8.66; this is marginally consistent with the OSSOS 9:1 population estimate. We conclude that resonance sticking is a plausible explanation for the observed 9:1 population, but we also discuss the possibility of a primordial 9:1 population, which would have interesting implications for the Kuiper belt's dynamical history.Comment: accepted for publication in A
    corecore